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The spin Coulomb drag is the decay of the spin current in a metal as a consequence of the Coulomb
interaction between up- and down-spin carriers. This interaction reduces the spin current but does not change
the spin-polarization. We calculate the critical exponents of the resistivity for up- and down-spin electrons and
the transresistivity for the spin-polarized Hubbard chain with nonmagnetic impurities within the Kubo formal-
ism using the Bethe ansatz solution and conformal invariance. Due to the Luttinger liquid properties the
temperature dependence of the transport correlation functions follow power laws of T with nonuniversal
exponents.
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I. INTRODUCTION

The spin Coulomb drag1 is a distinctive feature of spin-
polarized transport. Due to the friction between the spin-
components via the Coulomb interaction the minority spins
electrons are accelerated at the expense of the majority spin
current.2–6 In the absence of spin-flip mechanisms, such as
magnetic impurities, the total magnetization is conserved and
only the currents of up- and down-spin carriers changes. The
spin Coulomb drag has been observed in a two-dimensional
electron gas using optical methods:7 an optical-helicity wave
generates a wave of electron-spin polarization, whose time-
evolution reveals the nature of the spin transport and relax-
ation. The spin-excitation relaxation time and the spin-
diffusion constant are then determined from the analysis of
the decay rate.7 The spin Coulomb drag is a fundamental
limitation for spintronics applications.

Many interesting effects are the result of Coulomb inter-
actions between the carriers in low dimensions. In a one-
dimensional �1D� conductor the correlations between elec-
trons lead to exotic properties generically referred to as
Luttinger liquid.8 Characteristic of 1D metallic systems are
the charge and spin separation, i.e., the charge and spin con-
tents of the wave functions propagate with different veloci-
ties, and the disappearance of the Fermi liquid quasiparticle
pole in the excitation spectrum, which is replaced by inco-
herent structures. Hence, the Fermi liquid picture breaks
down for interacting electrons in 1D. Correlation functions
usually acquire a power-law dependence on the frequency
and temperature.

The spin Coulomb drag and related phenomena in a quan-
tum wire have been studied by several authors.9–14 In Ref. 9
the interplay of the spin-drag with the spin-charge separation
is studied. The spin- and charge-density waves propagate at
different speeds and relax with different damping rates.
While the charges propagate ballistically, because the Cou-
lomb interaction conserves momentum, the spin propagation
is diffusive. In Ref. 10 quantum Monte Carlo simulations at
finite temperature for the spin-drag conductance are con-
ducted for the standard Hubbard chain with additional inter-
actions, including magnetic impurities. Sonin11 investigates
the equilibrium spin currents at the edge states of the 2D
Rashba medium, i.e., a spin-orbit quantum wire, and pro-

poses a method to measure the spin-currents using a cantile-
ver. In Ref. 12 the generation of a spin current by Coulomb
drag between two quantum wires via the application of a
magnetic field is studied using the bosonization method. The
spin-charge separation in a strongly correlated spin-polarized
chain is analyzed using path integrals and the bosonization
technique in Ref. 13. A spin-polarized one-dimensional con-
ductor could in principle be fabricated by etching a nano-
groove into a locally depleted 2D electron gas in ferromag-
netic Mn-doped GaAs.

In a previous calculation14 we obtained the conductivity
in the majority and minority bands and the transconductivity
employing the bosonization approach and the Kubo formula.
To obtain a finite transresistivity it is necessary to include
impurity scattering and/or inelastic scattering by phonons.
We did not include phonons and treated impurity scattering
and the spin-flip Coulomb back-scattering perturbatively. A
perturbative treatment in the disorder is insufficient to con-
sider localization and dephasing effects, which are then com-
pletely neglected in the calculation.14 The critical exponents
of the power-law temperature dependence of the conductivi-
ties and the transconductivity are nonuniversal and strongly
dependent on the forward-scattering amplitude.

In this paper we consider the current-current correlation
functions derived in Ref. 14 and use conformal field theory
and the Bethe Ansatz solution of the Hubbard model to ob-
tain the critical exponents. The remainder of the paper is
organized as follows. In Sec. II we briefly review the results
of the Bethe Ansatz solution of the spin-polarized Hubbard
chain and obtain the conformal towers.15 In Sec. III summa-
rize the generalized Kubo equation and the current-current
correlation functions previously obtained in Ref. 14. The
critical exponents of the resistivities are calculated in Sec.
IV. A discussion of the results is presented in Sec. V and
conclusions follow in Sec. VI.

II. BETHE ANSATZ SOLUTION OF THE HUBBARD
MODEL

The model under consideration is the Hubbard chain con-
sisting of nearest-neighbor tight-binding hopping and a local
Coulomb repulsion between electrons of opposite spin,
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HU = − �
i�

�ci�
† ci+1� + ci+1�

† ci�� + U�
i

ni�ni�̄, �1�

where the hopping matrix element is set equal to one, and ni�
is the number operator. We consider Ne itinerant carriers on a
chain of Na sites with periodic boundary conditions.

Model �1� has been exactly diagonalized by means of two
nested Bethe Ansätze by Lieb and Wu16,17 in terms of two
sets of rapidities, �kj� for j=1, ¯ ,Ne representing the
charges, and ���� for �=1, . . . ,M, with Ne−2M correspond-
ing to the population difference between the two spin com-
ponents. These rapidities are self-consistently determined by
the Bethe Ansatz equations and the energy is given by E
=−� j=1

Ne 2 cos�kj�.
For U�0 all the rapidities are real in the ground state and

densely distributed �without holes� between the respective
Fermi points at �Q for the charges and �B for the
“spinons.”16 In the absence of magnetization the “spinon”
band is completely filled, so that B=�. In the thermody-
namic limit, the densities for the rapidities, ��k� and ����,
satisfy the following integral equations16,17

��k� =
1

2	
+ cos k�

−B

B

d�a1�sin k − ������ ,

���� + �
−B

B

d��a2�� − �������� = �
−Q

Q

dka1�� − sin k���k� ,

�2�

where the integration kernels are given by an�x�
= �Un /4	� / �x2+ �Un /4�2�. The integration limits are deter-
mined by the total number of carriers, n=Ne /Na
=	−Q

Q dk��k�, and the magnetization, m, 2m=Ne /Na−2M /
Na=Ne /Na−2	−B

B d�����. The total energy density is E /Na

=−2	−Q
Q dk cos�k���k�.

The critical properties of correlation functions at low tem-
peratures and small frequencies are determined by the low-
energy excitation spectrum, which is given by the finite size
corrections of mesoscopic order to the ground state energy in
terms of a set of quantum numbers,18,19

E = Na
� + �
l

	vl

2Na

�

q

�ẑ−1�lq�Nq�2

+ �
l

2	vl

Na
�
�

q

zqlDq�2
+ nl

+ + nl
− −

1

12
 , �3�

where 
� is the ground state energy density in the thermody-
namic limit, l and q label the two rapidity bands and take
values c and s �for charges and “spinons”�, and vl denote the
group velocities of the two rapidity bands. Here �Nq is the
departure of the number of rapidities in the band q from the
equilibrium value, i.e., �Ne and �M, respectively. Note that
each band has two Fermi points corresponding to forward
and backward moving states. Dq is the backward-scattering
quantum number, i.e., 2Dq represents the difference of for-
ward to backward moving states in each band. These quan-
tities are sensitive to the parity in each set of rapidities,20

Dc = ��Ne + �M�/2 �mod 1� ,

Ds = �Ne/2 �mod 1� . �4�

Finally, nq
� define the low-lying particle-hole excitations

about each of the Fermi points. Here �Nq, nq
� and 2Dq take

always integer values; hence Dq can either be an integer or
half-integer depending on the �Nq.

The quantities zlq in Eq. �3� are the dressed generalized
charges of the excitations, which describe the interplay of the
different Fermi points when particles �charges or “spinons”�
are added or removed, and ẑ−1 denotes the inverse of the
matrix. The group velocities and the dressed generalized
charges are obtained from the Bethe Ansatz. Here we only
need the charges zlc=�l,c�Q� and zls=�l,s�B�, but not the
group velocities vl. The functions �l,q satisfy coupled integral
equations similar to Eq. �2�, namely,18

�l,c�k� = 
l,c + �
−B

B

d�a1�sin k − ���l,s��� ,

�l,s��� = 
l,s − �
−B

B

d��a2�� − ����l,s����

+ �
−Q

Q

dk cos ka1�� − sin k��l,c�k� . �5�

The equations simplify considerably for B=� �zero magne-
tization�: zcs=0, zss=1 /�2, zsc= 1

2zcc, while zcc is determined
through a single integral equation.18,19 The quantity �=2zcc

2

is related to the charge stiffness. In this limit, the Fermi
momentum for the charges is pFc=	n with n=Ne /Na and the
one for the spinons pFs=	n /2, so that for the Fermi momen-
tum of up- and down-spin electrons we have pF1= pF2
=	n /2.

In general the coupled Eqs. �5� have to be solved numeri-
cally. The dependence of zlq as a function of 2m=Ne /Na
−2M /Na is shown for U=4 and n=Ne /Na=0.5 in Fig. 1. The
dependence for U=2 and U=8 is similar and is not shown
here. zcc for 2m→0 is nonuniversal and varies between �2
for U=0 and 1 for U→�. Note that zss is singular as m tends
to zero. This singularity arises from a 1 / ln�m�-dependence,
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FIG. 1. Dressed generalized charges for U=4 and n=0.5 as a
function of the magnetization m. Note the singular behavior of zss

as m→0, where zss=1 /�2 �Ref. 15�.
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consequence of the SU�2� invariance, which has been dis-
cussed in detail by solving the corresponding Wiener-Hopf
equation in Ref. 15. The other three generalized charges are
affected by this singularity only in higher derivatives. For
n=0.5 and 2m→1 /2, on the other hand, only zcs is nonuni-
versal �U-dependent�.

In terms of the quantum numbers defined above, the total
momentum of the system is given by18,19

P =
2	

Na
�

l

�NlDl + nl
+ − nl

−� . �6�

The conformal dimensions of primary fields characterized by
the above quantum numbers are obtained from Eqs. �3� and
�6�18,20

2�c
� = 2nc

� + 
zccDc + zscDs �
zss�Ne − zcs�M

2 det
�2

,

2�s
� = 2nS

� + 
zcsDc + zssDs �
zcc�M − zsc�Ne

2 det
�2

, �7�

where det=zcczss−zsczcs.
To calculate the correlation function �O�x , t�O†�0,0�� first

the allowed sets of quantum numbers associated with the
operator O and the conformal dimensions have to be deter-
mined. Each set of quantum numbers gives rise to one term
for the correlation function. At finite temperature and for
finite chain length each term of the correlation function for
long times and large distances is proportional to17,19,20

exp�− 2i�DcpFc + DspFs��

� � 	T/Na

sinh�	T�x − ivct�/vc�

2�c

+

� � 	T/Na

sinh�	T�x + ivct�/vc�

2�c

−

� � 	T/Na

sinh�	T�x − ivst�/vs�

2�s

+

� � 	T/Na

sinh�	T�x + ivst�/vs�

2�s

−

, �8�

where the exponential in the first line represents the momen-
tum transfer across the Fermi surfaces. Here the time t is the
Euclidean time. As expected for a Luttinger liquid, at T=0
the response function falls off with a power law for long
times and distances, while at finite T this dependence is ex-
ponential.

III. CURRENT-CURRENT CORRELATION FUNCTION

In this section we briefly summarize the results of Ref. 14
we need for the present calculation. The current operator for
up- and down-spin electrons is defined as

js = �
k

k

m� �aks
† aks + bks

† bks� , �9�

where aks �k�0� and bks �k�0� are the annihilation opera-
tors for forward and backward moving electrons, respec-
tively. We introduced an effective mass m� �assumed to be
the same for up- and down-spin carriers� and linearized in
the momentum. In terms of the spin-components the conduc-
tivity is defined as a 2�2 matrix

�s,s��z� = − i�e2/z��s,s��z� + i�e2ns/m�z�
s,s�, �10�

where e is the electron charge, ns the number of carriers with
spin-component s and �s,s��z�=−��js ; js���z is the current-
current correlation function.1,21 The diagonal terms of �̂ are
the conductivity of the up- and down-spins, respectively, and
the off-diagonal component is the transconductivity. It is
then possible to define relaxation rates21

1

�s,s�
= − lim

�→0
��� js; js�����

m�

ns�
, �11�

where �s,s refers to the relaxation times of the conductivity
and �s,s̄ to that of the transconductivity. Here �� ; ���� refers to
the imaginary part of the correlation function.

The scattering of the electrons off impurities is defined by
the Hamiltonian

Himp =
�

L
�
jkk�s

ei�k�−k�Rj�aks
† ak�s + bks

† bk�s + aks
† bk�s + bks

† ak�s� ,

�12�

where � is the coupling strength, which is assumed to be
weak, and the Rj denote the positions of the scattering cen-
ters. It is assumed that the impurities are distributed at ran-
dom and that their concentration is low. We disregard the
interference among the scattering centers.21 This neglects
any possibility for a localization of states due to disorder.

It should be pointed out that there exists another class of
�magnetic� impurities which can be incorporated into the
Hubbard chain without destroying the integrability.22 There
are two variants; they can be embedded into the chain or
placed at one end-point of the chain.23 Only the embedded
ones are meaningful for the conductivity. These impurities
are very different from the nonmagnetic impurities consid-
ered in Eq. �12�, in particular, because the scattering con-
serves the momenta of the particles and hence does not pro-
duce a momentum transfer of 2kF. A finite concentration of
the integrable impurities have been shown to modify the
dressed generalized charges zlq and hence the critical expo-
nents of correlation functions.24,25

The force operator acting on the current of spin compo-
nent s is

As = �js,Himp�

=
�

m�L
�
jkk�

�k − k��ei�k�−k�Rj

� �aks
† ak�s + bks

† bk�s + aks
† bk�s + bks

† ak�s� . �13�
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Equation �13� has two types of terms; the first two terms
involve only forward scattering, i.e., small momentum trans-
fer, which can be neglected, while the latter two terms con-
sist of backward scattering, i.e., across the Fermi surface
with momentum transfer 2kFs.

26 To second order in � the
imaginary part of the equal spin current-current correlation
function is then14

�2��js; js���� = − � �

m�L
�2

ni�
kk�

�k − k��2

� ���aks
† bk�s;bk�s

† aks���� + ��bks
† ak�s;ak�s

† bks���� � ,

�14�

where ni /L is the impurity density. The momentum transfer
for these terms is of 2kFs. Evaluated for the noninteracting
system �U=0� these terms yield 1 /�s,s=2�2nim

� /	ns.
14,21,26

The transconductivity is given by the spin-up current
spin-down current correlation function14

�2��js; js̄���� = −
�U

�m�L�2 �
jkk�q

�k − k��2

� �ei�k�−k�Rj�ak+qs̄
† bk�+qs̄���aks

† bk�s;bk�s
† aks����

+ e−i�k�−k�Rj�bk−qs̄
† ak�−qs̄���bks

† ak�s;ak�s
† bks����

+ e−i�k�−k�Rj�bk�−qs
† ak−qs���aks̄

† bk�s̄;bk�s̄
† aks̄����

+ ei�k�−k�Rj�ak�+qs
† bk+qs���bks̄

† ak�s̄;ak�s̄
† bks̄���� � ,

�15�

where we factorized in the usual way

ak+qs�
† bk�−qs̄�

† aks̄�bk�s� → �ak+qs�
† bk�s��bk�−qs̄�

† aks̄�

+ �bk�−qs̄�
† aks̄��ak+qs�

† bk�s�. �16�

Each of the factors conserves the spin and the expectation
values are evaluated using Himp. The sum over j just yields
the number of impurities, ni, where again we neglect the
interference in the scattering between impurities. In all terms
the momentum transfer in the scattering is across the Fermi
surface, i.e., either �2kF↑ or �2kF↓.

When the correlation functions and expectation values on
the right-hand side of Eq. �15� are evaluated for the nonin-
teracting system we obtain

���js; js̄���� = −
�2Unim

�

	2 � 1

kFs̄
+

1

kFs
� , �17�

i.e., the transconductivity is proportional to the impurity con-
centration, to the Coulomb interaction, the square of the im-
purity scattering and inversely proportional to the group ve-
locities.

IV. CRITICAL EXPONENTS

In this section we calculate the critical exponents for the
resistivities and the transresistivity using the Bethe Ansatz

solution of the Hubbard model and conformal invariance.
We consider first the conductivity of the majority spin

�up-spin� carriers. According to Eq. �14� the relevant opera-
tor for the relaxation is ak↑

† bk�↑ and its Hermitian conjugated.
This corresponds to momentum transfer from one Fermi
point to the other, i.e., �2kF↑. The corresponding quantum
numbers for this process are �Ne=�M =0 and Dc=−Ds
= �1. The momentum transfer is then �P=2DckF↑+2�Dc
+Ds�kF↓= �2kF↑. The leading critical exponents correspond
to no excitations at the Fermi points, i.e., nc

�=ns
�=0, so that

�↑ = 4��c + �s� = 2�zcc − zsc�2 + 2�zcs − zss�2. �18�

Similarly, the relevant operators for the current-current
correlation function of down-spin �minority spin� electrons
are ak↓

† bk�↓ and bk↓
† ak�↓. This corresponds to a momentum

transfer of �2kF↓. The quantum numbers for these operators
are �Ne=�M =0, Dc=0, and Ds= �1. For the leading criti-
cal exponents there are no excitations at the Fermi points,
nc

�=ns
�=0, and

�↓ = 4��c + �s� = 2zsc
2 + 2zss

2 . �19�

Instead of the imaginary Euclidean time we consider real
time �it→ t� and the limit �x��v�t�, i.e., the long-time ap-
proximation �we need the �→0 limit� and relatively short
distances. The correlation functions are then proportional to
�D is an electronic cutoff for the long-time approximation of
the order of the hopping integral�

−
iD2

	
� dt sin��t�
 − i	T/D

sinh�	Tt���s

=
D2

2	2T

1

���s�
�2	T

D
��s

sinh��/2T�����s

2
+ i

�

2	T
��2

.

�20�

Here � is the Gamma function. For the noninteracting sys-
tem and zero polarization �s=2. Hence, we rewrite the expo-
nent as �s=2+�s and expand Eq. �20� in powers of �s

2T�2	T

D
��s

sinh��/2T�exp�− ln ��2 + �s��

� exp
2 Re ln ��1 +
�s

2
+ i

�

2	T
��

= 2T�2	T

D
��s

sinh��/2T�
�/2T

sinh��/2T�

� exp
�s�Re ��1 + i
�

2	T
� − ��2��� . �21�

Here Re denotes real part and � the digamma function. Di-
viding the expression by � and taking the limit �→0 we
obtain �2	T /De��s, which is the renormalization factor of
1 /�ss due to the Luttinger properties of the electron gas. The
exponents �↑ and �↓ are presented in Fig. 2 as a function of
the polarization 2m for n=Ne /Na=0.5 and several values
of U.

The calculation of the critical exponents for the transcon-
ductivity is more difficult, since the transconductivity is a
sum over products of an expectation value and a correlation
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function, Eq. �15�. The expectation value �aqs
† bps� is deter-

mined through the Green’s function ��bps ;aqs
† ��i�, which in-

volves a product of two propagators, one for forward movers
and one for backward movers. The renormalization of these
two propagators needs to be calculated. The operators asso-
ciated with these propagators are single fermion creation �an-
nihilation� operators.

The quantum numbers for an up-spin propagator are
�Ne=1, �M =0, nc

�=ns
�=0, and Dc=−Ds= �1 /2. This cor-

responds to a momentum transfer of �P= � pF↑. The confor-
mal dimensions are

2�c
� =

1

4
�zcc − zsc � zss/det�2,

2�s
� =

1

4
�zcs − zss � zsc/det�2. �22�

Similarly, the quantum numbers for a down-spin propagator
are �Ne=1, �M =1, nc

�=ns
�=0, Dc=0, and Ds= �1 /2. The

momentum transfer in this case is �P= � pF↓ and the con-
formal dimensions are

2�c
� =

1

4
�zsc � �zss − zcs�/det�2,

2�s
� =

1

4
�zss � �zcc − zsc�/det�2. �23�

The propagator is now proportional to

�−i�	T /L� /sinh�	Tt��qs
2
, where qs

2=2��c
++�c

−+�s
++�s

−� and
t is the real time. Here we again assumed the long-time ap-
proximation, i.e., �x��vt. Fourier transforming in analogy to
Eq. �20� we obtain

−
1

	
� dt sin��t�
 − i	T/D

sinh�	Tt��qs
2

=
1

2	2T

1

��qs
2�
�2	T

D
�qs

2

sinh��/2T����qs
2

2
+ i

�

2	T
��2

.

�24�

For the noninteracting system qs
2=1, so that we write qs

2

=1+
s and expand the exponents in powers of 
s

sinh��/2T�
1

2	2T

	

cosh��/2T�
2	T

D
�2	T

D
�
s

� exp

s�Re ��1

2
+ i

�

2	T
� − ��1��� . �25�

This function corresponds to the imaginary part of the com-
mutator correlation function, while we actually need the an-
ticommutator function. The two functions are related via the
fluctuation-dissipation theorem. Multiplying Eq. �25� by
coth�� /2T� we finally obtain in the limit �→0

1

D
�2	T

D
exp���1/2� − ��1���
s

=
1

D
�	T

2D
�
s

. �26�

The factor �	T /2D�
s corresponds to the reduction of the
discontinuity of the Fermi function at the Fermi level due to
the Luttinger properties of the electron gas, i.e., for T→0 the
discontinuity is suppressed with a nonuniversal power law
�marginal Fermi liquid�.

The correlation functions in Eq. �15� are the same ones
we already calculated for the conductivities. Collecting all
the factors, the transconductivity correlation function yields

1

�↑↓
=

�2Unim
�

	2kF↓
�	T

2D
�2
↓�2	T

eD
��↑

+
�2Unim

�

	2kF↑
�	T

2D
�2
↑�2	T

eD
��↓

, �27�

so that the two critical exponents are, �t1=�↑+2
↓ and �t2

=�↓+2
↑. These exponents are displayed in Fig. 3 for the
same parameters as in Fig. 2.

V. DISCUSSION

�1� The dressed generalized charges as a function of the
polarization are quite similar for the different values of U.
They can be characterized by the limiting cases 2m→0 and
2m→0.5, which in the present case is the maximum polar-
ization. For 2m→0 the nonuniversal charge is zcc=2zsc,
which with increasing U varies from �2 to 1. On the other

FIG. 2. Critical exponents �s for the conductivity of up-spin carriers and down-spin carriers as a function of two times the magnetization
for n=Ne /Na=0.5 and U=2 �dashed curve�, U=4 �solid curve� and U=8 �dotted curve�, respectively.
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hand, for 2m→0.5, zcs is nonuniversal decreasing from 1.0
to 0.0 with increasing U.

�2� As expected, the relaxation rate for the up-spin and
down-spin conductivity are equal to each other in the ab-
sence of spin-polarization. For 2m=0 the exponents are
negative, i.e., 1 /�ss diverges with a power law as T→0. The
exponent varies from 0 �for U=0� to −0.5 �for U=��. As a
function of 2m the exponents for the minority spins increase
but remain negative for all polarizations and U. For the ma-
jority spin carriers the exponents increase monotonically
with 2m and change sign at about 2m=0.11. The variation of
�↑ with 2m is larger for large U. Hence, the majority spin
relaxation rate decreases as T→0 for large spin polarization,
while it increases for weak spin polarization.

�3� As in Ref. 14 there are two exponents for the transcon-
ductivity, which increase monotonically with 2m. The rate of
increase depends on U, being larger for the strongly interact-
ing system. For 2m→0 the exponents are negative, so that
1 /�↑↓ increases as T→0, while for strong spin polarization
the exponents are positive and 1 /�↑↓ decreases as T→0.

�4� The exponent �↑ in Fig. 2 appears to change sign at a
value of the magnetization that is independent of U. A de-
tailed analysis of the exponent in the neighborhood of that
point reveals that �i� the three curves shown do not intersect
each other exactly at the same point, and �ii� the vanishing of
�↑ does not occur at exactly the same magnetization for the
three values of U. The same is true for �t2 in Fig. 3.

�5� In Ref. 14 we calculated the exponents within the
bosonization approximation as a function of a forward-
scattering interaction V and a backward-scattering amplitude
U�. All exponents were found to depend strongly on the
forward-scattering amplitude and if V is sufficiently strong
all exponents are positive. The spin-polarization was kept
fixed, since it is difficult to vary 2m within the bosonization
approach. The bosonization technique yields asymptotically
exact exponents within the weak-coupling limit.

�6� We reproduced the results by Luther and Peschel26 for
the conductivity of spinless fermions with impurities and for-
ward scattering. This case, obviously, refers to no spin polar-
ization.

�7� The Coulomb interaction in the Hubbard model is a
local interaction, which confines the forward and backward-
scattering amplitudes to be equal, V=U�. In order to compare
the present Bethe Ansatz and conformal field theory calcula-

tion with the bosonization results, it is necessary to consider
the V=U� weak-coupling limit. For zero spin polarization the
bosonization calculation also yields that �↑=�↓. For weak
coupling and spin polarization both exponents are very small
and positive. For the Bethe Ansatz solution the exponent has
the same order of magnitude but is negative. The small dif-
ference between the two calculations can be attributed to U�

�spin-flip scattering across the Fermi surface�, which does
not contribute to the bosonization exponents, but it does in
the case of the Bethe Ansatz solution. U� provides another
channel for spin-transfer between the up- and down- spin
currents. Hence, the exponents are expected to be reduced
and in this case even change sign.

�8� The present Bethe Ansatz calculation is different from
the one carried out for the Coulomb drag between two
nearby parallel wires.27 The spin Coulomb drag is based on
scattering off impurities and the Coulomb interaction, while
in the Coulomb drag the momentum transfer is between
wires but no impurities are required.

�9� There are two relaxation rate exponents for the
transconductivity in both calculations �bosonization and Be-
the Ansatz�. As the Coulomb interactions tend to zero, both
exponents vanish in both calculations. A comparison be-
tween the exponents for weak coupling in the presence of
spin polarization yields that they are small in both cases and
a discrepancy may be attributed to the spin-flip scattering
across the Fermi surface �U��, which does not contribute to
the exponents in the bosonization case.

�10� We now invert the conductivity matrix to obtain the
dc resistivities,21

�ss� = −
�m��2

e2nsns�
lim
�→0

���js; js����� . �28�

This way the exponent of �↑↑ is �↑, the one of �↓↓ is �↓ and
the exponents of the transresistivity are �t1 and �t2. If the
exponent �s is positive the resistivity of the corresponding
channel decreases as T→0 and the channel behaves metalli-
clike, while if the exponent is negative the resistivity of the
channel increases as T→0 and the channel behaves like an
insulator.

�11� The temperature dependence of the majority and mi-
nority spin resistivity and the transresistivity are shown in
Fig. 4 for three values of the magnetization, normalized to
the value for T=D. For strong spin polarization the majority
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=2 �dashed curve�, U=4 �solid curve� and U=8 �dotted curve�, respectively.
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spin carriers display a metalliclike behavior, while for small
spin polarization the temperature dependence suggests an in-
sulator. The minority spins always tend to have a small con-
duction �insulatorlike�. The transresistivity has positive ex-
ponents for large spin-polarization; this fact is favorable for a
sustainable spin current. The transresistivity has two terms,

�↑↓

�↑↓
0 =

A↑�T/D��t1 + A↓�T/D��t2

A↑ + A↓
, �29�

where we parametrized As=1 / �0.5+2sm� with s= �1. It is
assumed that the magnetization does not change with tem-
perature.

�12� The power laws arising from the Luttinger liquid
properties have the underlying assumption of the long-time
approximation. However, the electron states are not infinitely
lived due to the scattering off the impurities. Hence, the
power laws are no longer valid below a characteristic tem-
perature that depends on the scattering strength, and the im-
purity and carrier concentration. Below this characteristic
temperature localization is expected to take over. In other
words, the conductivities or transconductivity cannot become
arbitrarily large if the corresponding exponent is positive.

�13� The calculation of the transconductivity involves the
factorization shown in Eq. �16�. This factorization is neces-
sary to employ conformal field theory to evaluate the corre-
lation function. Due to this factorization the results obtained
for the transconductivity are only approximate. The same

factorization was used for the calculation within the
bosonization approach, where it is asymptotically exact
within the long-time approximation.

VI. CONCLUSIONS

We studied the spin Coulomb drag between the majority
and minority spin components in a spin polarized quantum
wire. As shown in Ref. 14 the momentum relaxation, i.e., the
increase of the momentum of the minority carriers at the
expense of the majority electrons without change in the
magnetization, is only effective with back-scattering off non-
magnetic impurities. We have neglected the interference in
the scattering between impurities and hence excluded all
possibility for a localization of states due to disorder.

The temperature dependence of the conductivity and
transconductivity in the form of power laws is introduced by
the Luttinger liquid properties of the 1D Hubbard model.
Within the bosonization approach for a nonlocal interaction
the dominant scattering amplitude is forward scattering V.
For the Hubbard model the forward and backward-scattering
amplitudes are equal. This leads to a situation unfavorable
for conduction at low T for small spin polarization. For large
spin polarization the majority spin carriers are favorable to
conduction, while the minority spin electrons have a large
resistivity. The spin Coulomb drag is proportional to the
transresistivity,1 which at low T is large for small spin-
polarization while small for large polarization.
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FIG. 4. Temperature dependence of the �a� majority spin resistivity, �b� minority spin resistivity, and �c� transresistivity normalized to
their values for T=D for U=4 and n=0.5. The three curves correspond to different magnetizations: For the solid line 2m=0.05, for the
dashed curve 2m=0.20 and for the dash-dotted curve 2m=0.40.
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